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In part I of this paper, a minimum principle was found for the finite -

state, finite - memory (FSFM) stochastic control problem. In part II, conditions

for the sufficiency of the minimum principle are stated in terns of the

informational properties of the problem. This is accomplished hy introducing

the notion of a signaling strategy. Then a min-H algorithm based on the FSFM

minimum principle is presented. This algorithm converges, after a finite number

of steps, to a person - by - person extremal solution.
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I. INTRODUCTION

In this part of the paper, the development of the thecry of the finite -

state, finite - memory (FSFM) stochastic control problem initiated in Part I

[1] is continued.

Specifically, the sufficiency of the FSFM minimum principle (which is

in general only a necessary condition) is investigated. By introducing the

notion of a signaling strategy as defined in the literature on games in

extensive form [2], conditions under which the FSFM minimum principle is

sufficient are determined. This result is interesting since it explicitly

interconnects the information structure of the FSFM problem with its

optimality conditions.

The paper closes with a discussion of -the min-H algorithm for th FSFM

problem. It is demonstrated that a version of the algorithm always converges

to a particular type of local minimum termed a person - by - person extremal.



II. SIGNALING AND SUFFICIENCY

The notion of a signaling strategy arises in the theory of Kuhn -

type extensive games. According to Kuhn, an extensive game is:me A-i- 1

tree with

(i) a partition of the vertices with alternatives into the

chance moves P 0 and player moves P 1, .. , Pn

(ii) a partition of the moves of P. into information sets

(iii) a probability distribution on the alternatives of. the

information sets of P0

(iv) an n-tuple of real numbers for each terminll vertex.

An example of a Kuhn-type extensive game is shown in Figure 1.

There is one chance move in P0 with four alternatives. Each alternative

consists of the choice of an outcome of tossing two pennies. Thus

each outcome occurs with probability 1- There are four moves in P1

and player one's information set is equal to P. Thus player one doef

not know the outcome of the first chance move. He has to guess if the

pennies match or don't match. If he guesses correctly, he gets to ke?3

his own penny and player two's penny (the payoff is (+1, -1)). If

he guesses incorrectly, he loses his penny to player two (the payoff if

(-, +1)for a complete expositi).

See [.3] for a complete exposition.-
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Every FSFM problem can be reduced to a Kuhn extensive game. It might

be thought that the reduction is accomplished by identifying the player's

alternatives with the controller's inputs, but this is not always

possible. Suppose, for example, that X0 = {1,21, Ul = {0,1}, and

rl - Y l } where Yl(1) - 1, y1 (2) = 0 and = 1- 1 . 1 Clearly,

the game tree for this problem must have its first seven nodes 
as

in Figure 2, with vertices 1 and 2 in the set of moves of player one

( the only player ). However, it is not possible to partition'

p1 into information sets so that the restriction 
that the same alternative

must be chosen for each vertex in a given information set is equivalent

to the restriction that the control law must lie in r . The point is

that restricting the control laws to lie in an arbitrary subset of

U t- 1 is a more general restriction than one based on information.

Thus, it is in general necessary to identify the player's alternatives

with the set of control laws. This is undesirable since the game does

not exhibit the information properties of the FSFM problem. However,

it will be shown next that the first reduction (identifying

alternatives with controller inputs) is possible for FSFM problems with

simple information constraint.

1The choice of rl seems unnatural, but has appeared in the literature

[41. The control laws in rl are the closed-loop control laws; those

in U1  - r1 are the open-loop control laws.

ORIGINAL PAGE IS
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Figure 2 Game Tree for FSFM Problem



Definition 1

The FSFM problem defined by equations (1) and (2) of Part I is said to

have a simple information constraint if

rt = (Yt E UtXt-1 Y- 1 ( ) C Ft-()

for t = 1,2,...,T, where Ut = P(Ut ) and F_ 1 is a subfield of 1 P(Xt-).

The reason for restricting attention to FSFM problems with simple

information constraints is that these problems can be readily identified

with a corresponding Kuhn nmdel of an extensive game

Suppose that a FSFM problem with simple information constraint is

given. Let the sets X0 , Q1, Ul' Q2 ' ... , UT have n1,nl m, n 2 , ... mT

elements, respectively. The rank 0 move of the corresponding game

tree has n alternatives. For 1 < t < T, the rank 2t-1 move has nt
0

alternatives and the rank 2t move has mt alternatives. Thus every play

has rank 2T + 1 (Figure 3).

1A move is a vertex of the game tree with alternatives; a play is a

(terminal) vertex without alternatives. The rank of a move or play is
the number of moves that preceed it. See Kuhn [ 3] for details.
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The chance moves P0 are the moves with rank 0, 1, 3, ... ,

2T-1, and the moves P1 of player 1 (the only player) are the moves

with rank 2, 4, ... , 2T. Each alternative of the initial (rank 0)

move of the game tree corresponds to an element of X0 . Similarly, the

alternatives of moves with rank 2t-1 correspond to elements of Qt, and

moves with rank 2t correspond to elements of Ut .

Each information subset of PO contains a single point of P . The

information sets of P1 are defined by the atoms1 of Ft as follows. NoticE

that the system equations of the FSFM problem define a map

St : X0 x Q1 x Ul x ... x Qt x Ut Xt  (2)

which takes an initial state and a sequence of inputs and gives

corresponding state. Each atom F of Ft defines a set

((x(0), q(1), u(1), ... , q(t), u(t)): St (x(0), q(1), u(1), ... ,

q(t), u(t)) F} C X0 x Q1 x U1 x ... x.Qt x Ut .  (3)

Since there is a one-to-one correspondence between the set X0 x Q1 x U1 x

... x Qt x Ut and the moves of order 2t + 1 of the game, the partition

induced on X0 x Q1 x U1 x ... x Qt x Ut by the atoms of Ft induces a

partition on the corresponding set of moves. Thus each atom F E Ft gives

rise to a single information set for player 1- containing moves of player

1. As a consequence, all the moves of given information set are of the

1An atom of a field F is a set F E F such that if E E F and E C F, then
either E = 0 or E = F. The atoms of a finite field always exist and form
a partition [ 5.1.
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same rank. This is not surprising, since the problem is sequential [6].

To finish the specification of the game, the probabilities of the

chance moves must be defined and the terminal cost specified. If an

information set of P0 contains a move of rank 2t-1, its alternative

corresponding to q Qt is chosen with probability pt(q). The terminal

cost is determined by the fact that the plays are in one-to-one

correspondence with X0 x Q1 x U1 x ... x QT x UT. Thus each play determines

a complete state-control trajectory for which J can be evaluated. This

value of J is the cost associated with the play.

In game theory, a strategy for player 1 is the assignment of a single

alternative to each information set. For FSFM problems with simple

information constraint, a control law is the assignment of a point in

Ut to each atom of Ftl (since Yt is constrained to be F tmeasurable).

Because of the manner in which the information sets have been constructed

above, there is clearly a one-to-one correspondence between the control

laws of a FSFM problem with simple information constraint and We ~ttateies -

of its corresponding extensive game form. Thus the same notation y will be

used to describe either a control law sequence or a strategy for the

equivalent extensive game.

Since an equivalence has been established between FSFM models with

simple information constraint and Kuhn extensive game models, the notions



of signaling strategy and perfect recall can now be precisely defined.

The following definitions and propositions are stated for 1-player games,

but can be easily extended to n-person games.

Definition 2 [3].

A move Z of player 1 (n=l) is called possible when playing y if it has

non-zero probability of occurring when the strategy y is used. An

information set I for player 1 is called relevant when playing y if

some Z E I is possible when playing y.

Proposition 1.

A move Z for player 1 is possible when playing y if and only if y

chooses all alternatives on the path W from the origin to Z which are

incident at moves of player 1.1

Proof

See reference [3 ], page 201.

Definition 3 [3].

A game G is said to have perfect recall if I is relevant when playing

y and Z s I implies that Z is possible when playing Y for all I

and y.

Definition 4 [2].

Let I be an information set for player 1, and let I u = {moves following

some move in I by alternative ul. Then I is a signaling information set

1All chince moves are assumed to occur with non-zero probability.
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for player 1 if, for some u and some information set J of player 1,

I u AJ I 0 and J Q Iu .

Proposition 2 [2].

A game G has perfect recall if and only if player 1 has no signaling

information sets.

Proof

See reference [2.], page 268.

The following proposition is not valid for general games, but is a

special property of 1-person (stochastic control) problems.

Proposition 3.

Let G be a 1-person game with perfect recall, and let I be an

arbitrary information set of the player. If I is not relevant when

playing Y, then the probability of any move in I is zero under y. If

I is relevant when playing Y, then the probability of any move in I is

positive under y. Moreover, if I is relevant under any other strategy

Y, then the probabilities of any move of I under Y and are the same.

Proof

If I is not relevant when playing y, then by definition no move of

I is possible when playing y. Thus the probability of any such move is

zero when y is used.

If I is relevant when playing Y, then every move of I is possible

when playing Y since G has perfect recall. Thus the probability of any

such move is positive when y is used.
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If Z C I is possible when playing y, by Proposition 3.3.1 must

choose all alternatives on the path WZ from the origin to Z which are

incident at moves of player 1. All other alternatives on WZ are incident

at chance moves, and the probability of Z under Y is simply the product

of the probabilities:of these alternatives. But this probability is the

same for y, since y likewise chooses all alternatives on the path WZ
ircident at moves of player 1.

At this point, the preceeding definitions and propositions are applied

to the FSFM problem.

Definition 5.

A FSFM stochastic control problem is said to have perfect recall if

it has a simple information constraint and the corresponding extensive

game has perfect recall.

Definition 6.

A control law t for a FSFM problem with simple information constraint

is said to be a signaling control law if an atom of Ft- 1 gives rise to

a signaling information set in the corresponding extensive game.

Corollary 4.

A FSFM stochastic control problem with simple information constraint

has perfect recall if and only if it has no signaling control laws.

Proof

This is a direct consequence of the definitions, the construction o:

the equivalent extensive game, and Proposition Z.
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Theorem 5.

Suppose that a FSFM stochastic control problem with perfect recall

is given. Let A be an atom of Ft_1 . Then, for any control sequence,

either the probability of all states in A is zero, or the probability of

each state is a positive constant independent of y.

Proof

By construction, the probability of a state x(t-l) e A under y is

equal to the probability of the corresponding set of moves in the

information set I generated by A. Therefore, the theorem follows

immediately from Proposition 3.

The property of FSFM problems with perfect recall expressed by Theorem

5 makes it possible to strengthen the minimum principle to achieve a

sufficient condition for optimality.

Definition 7.

Let the set of state probability vectors reachable at time t,

1< t< T, when the initial state probability vector is no be denoted

rt(l0O) = {O P I (1) P 2 (2) ... P Y (t) r l y 2 e r2'
(4)

• "" ' t c rt}.

rt(T) is called the reachable set (r0 ( 0 ) = 0 )

Definition 8.

Suppose that the control law sequence Y* = (71, 2* YT*)

satisfies the condition



Yt* Yt*
7(t-l) P (t) 4(t) + (t-l) h (t)

(<(t-1) PYt(t) *(t) + 7(t-1) hYt(t)

for all Yt E t', for all w(t-1) £ rt-1  TO) where

(t-1) = P (t) *(t) + h (t) (6)

for t = 1,2,...,T (0*(T) = *T) . Then y* is said to be universally

extremal.

Lemma 6.

Any universally extremal control law sequence is optimal.

Proof

The proof proceeds by induction on the number of stages T.

Suppose T = 1. Then

(Yl ) = 7r(0) h Yl(1) + rw(1) (1) (7)

= WT(0) h (1) + 7(0) P Y(1) *(1)

so that any extremal is optimal.

Suppose the lemma is valid for problems with T-1 stages. It must be

established that the lemma is valid for problems with T stages.

Assume that (1*, Y2 * YT* ) is universally extremal. It

follows immediately that ( 2 *' 3*' "'' YT* ) is universally extremal for

the problem with cost

T Y(t)
j(Y2', ... YT; W(1)) = tE2 7T(t-1) h (t) + (T) *(T)
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for any 7W(1) C r (T ) . Therefore, by the induction hypothesis,

J(Y2*, ... , *; n(1)< I(Y2' ""' YT' w(1)) (9)

for all r(l) Cr (O) and for all y2  2, . T y  T. Moreover, since

J(Y1 ' 2' ""y) =(O) h Y (1) + J(y2, .. , i1(O) P Y(1))

(10)

it follows that

(y1, 2 " T 1 2 "-' 2 (11)

for all 1 E rl, y2  r', T..., r.

But the assumption that (Y*' Y2 *, "** Y *) is universally extremal

implies that

J1(1* y 2  . ' T*) = r(0) h 1 (1) + n(0) P 1 (1) *(1)

< 7r(O) h 1(1) + 7(0) P 1(1) **(1) = J(y' Y2*' YT*

(12)

for all Y1 rTl. The lemma follows from (12) and (11).

Notice from the proof of Lenmma 6 that the existence of a universally

extremal control law sequence y* implies the unusual fact that the

problems

min J(71, ... , t-l, t, .... T)  (13)

Yt E rt' ... , YT E rT

for y1  rT,' ... , t-1 E t- 1 have a common solution (yt*, ..., YT*).

Thus the existence of a universal extremal would seem to be rather ualikely.
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From this viewpoint, the following property of FSFM problems with perfect

recall seems rather remarkable.

Theorem 7.

Every FSFM problem with perfect recall has a universally extremal

control law sequence.

Proof

The proof is constructive. The control laws Yt are defined by

choosing their values on the atoms of Ft_1.

Consider the case for t=T. Let AT i be an atom of FT_ , i = 1,2,...,

1P. For simplicity of notation, suppose that AT1 contains the first 2

states of XT1 , 12AT contains states £1 + 1 through I of X , etc.

Notice that

I(T-1) P YT(T) O(T) + 7I(T-1) hYT(T) (14)

P i n
=E E ITi (T-l) E P (T) (T) + h. (T

i=l j= il +1 k=ljk

where n is the number of states in XT_' 0= 0 , and U;,(T) is the value of

YT on the ith atom of FT-1'

The decomposition ( 14 ) makes the construction of YT* clear.

By Proposition 5, every vector r(T-1) E rT O)(1o) either has nj (T-1)=0,

j = . + 1, ... , i+' or has T.(T-1) = fi(T-1), j = £. + 1, ... ,1 i+1 3 1 1

i+i' where each ri.(T-l) is a fixed number independent of YI' ... ~Ti
Therefore, T takes the value ui(T)on the ith atom of T

Therefore, y takes the value u.(T) on the ith atom of FT T, where
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1 n

min E W.. (T-1) E P (T) k (T) + h (T)
SEU T  j= i+1 k=

i n u.*(T) u *(T)
1 Wi(T-1) 1 P. (T) 4(T) + h4  (T)

j=i_1 +1 k1 k

(15)

The construction of the remaining Yt* is completed by applying an

analogous procedure to

n(t-1) P t) *(t) + 7(t-1) h Ytt). (16)

Theorem 7 is primarily of theoretical and conceptual importance.

Problems with perfect recall are more efficiently handled by (eriving an

equivalent deterministic problem that has a conditional probability vector

for the deterministic state. (The conditioning is with respect to the

field Ft- 1 . )Special cases of this procedure are implicit in the usual

stochastic dynamic programming algorithm [7,'8,9, ] and the

algorithm of Sandell and Athans for the 1-step delay problem [101.



III. A FSFM MIN-H ALGORITHM

A substantial number of numerical algorithms have been suggested

for the solution of deterministic optimal control problems. The most

natural of these for the FSFM problem is the min-H algorithm, which is

intimately related to the minimum principle. The min-H algorithm was

initially suggested by Kelley [: 11.]. Platzman [12] has shown that the

algorithm is equivalent to Howard's policy iteration method for Markovian

decision processes, and has suggested its application to the imperfect

state information case of that problem.

To simplify the notation, the sets Xt and Ut are assumed to have

a constant cardinality for 0 < t < T.

Algorithm (Min-H)

0 0 0
1. Guess Yl 2 ' " T Set j = 0.

2. Compute J (T), J (T-), ... , J (1) using YTj  71 in the

adjoint equation (J (T) = *T) . Set t = i.

3. Choose Y j + l to minimize fj+l(t-l) P (t) ~ (t) + j+1l(t-1) h (t).1

j+1

4. If t < T, compute j+lt) = T+1 (t-1) P (t).

Set t = t+l, and go to 3.

5. If t = T, test Jj+l <Jj, where

. T Y
= J (t-l) h (t) + TJ (T) T.
t=l

f Y j +  is not unique, choose arbitrarily but with preference for Yt

if it is in the minimizing set.
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If Jj+1 < j , set j = j+l, t = 0, and go to 2.

If :j+l =.Jj, stop.

Theorem 8*

The preceeding algorithm converges in a finite number of steps

to an extremal solution.

Proof

Let S = { S(y) Iy)r. Since S is finite, its elements can be arranged in

descending order,

S J, J21 ... , J > , (17)

Consider the set of positive numbers

R = J - J2 ""t-' - 1 t (18)

and let E = inf R. Note that E > 0.

Consider the difference ' - j+  defined in the algorithm. Clearly, either

jj _Jj+l = 0, or j - Jj+l 2 c. By induction, if the algorithm has not

converged by step j, then

JJ < - j. (19)
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Therefore, eventually Jj+1 -i, since inf iis finite. But J = j+I

implies that (yJ... )is extremal.

Although the FSFM Min-H algorithm is guaranteed to converge in a finite

number of steps, the amount of computation per step may be-prohibitive ,een

if full advantage of the special structure of the problem is made (see [13] for

a discussion and estimates of computation time). Thus modifications to the

basic algorithm for special cases are of interest.

Consider the case in which

1 2 k(20)r, =r x . (20)
t =t t  t

and F consists of control laws measurable with respect to..-subfld
t

F i of Xtt t

Make the following notational convention:

t : Xt + tx Ut2 x ... x Uk (21)

Y= (ytl  2 t2  ..., t (22)

Then

J(l' 12 " 1T)

= , !, .1 *, ... 2 ' , , , .. . k (23)
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Definition

A sequence

Y* = (Yc*' "" T* )  1cl ' "'' Y I T ' ' t

is said to be a person-by-person extremal if

J(y 1* i* YTk *

1 ' " ' t , ,.-t

1* i Y k *  7 ti fi
< J(71 ' "' Yt ' "'. ) for all yt t

i = 1, ... , k, t = 1, ... , T. (24)

Every optimal control law sequence is a person - by - person extremal,

but the converse need not be true. Clearly, the FSFM Min-H algorithm can be

modified to give an algorithm that always converges to a person - by-person

extremal. One possible order of minimization is

Y, I Y1.. ,2 I .. ' ' Y2 YTl •

Thus k forward and backward sweeps of the state and costate equations are

required per iteration. The number of multiplications required is considerably

reduced. See [13] for details. Clearly, the person -by- person Min-H algorithm

is finitely convergent to a person -by- person extremal solution.
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Notice that person-by-person approach is consistent with the minimum

principle approach:

1. both approaches given necessary conditions for optimality

2. both approaches are sufficient only under convexity assumptions

that do not hold in general

3. An initial guess is improved, but the improvement may stop

short of optimal.

These facts are consequences of the fact that the person-by-person 
and

min H algorithms are actually both concrete realizations of orthogonal

search. The Min-H algorithm minimized the cost without coordinated 
choice

of the control laws at different times. The person - by-person Min--H

algorithm minimizes the cost without coordinated choice 
of the control

laws of the various controllers at a fixed time instant.
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IV. SUMMARY AND CONCLUSIONS

The notion of signaling has been introduced from game theory and

shown to be relevant to the FSFM problem. In fact, the signaling

phenomena is of general importance in non-classical stochastic control

theory. The presence of signaling makes it necessary for decentralized

controllers to employ (ontrol laws with a dual purpose: simultaneous

communication and control. The presence of signaling in LQG problems

manifests itself in the nonlinear strategies that are optimal for these

problems [1,14]. (Given the prevelance of nonlinear coding and modulation

techniques in communication theory, the existence of nonlinear optimal

strategies for nonclassical LQG problems is hardly surprising.) Moreover,

the absence of signaling in LQG problems (in the LQG context, equivalent

to the presence of Ho-Chu nesting) insures the optimality of linear

strategies [15]. Thus the very special nature of the classical stochastic

control problem is made clear: only the control aspect of the dual problems

of communication and control need be considered.

The need to simultaneously solve -a -cotr6l and .comnnicat.onprbblem

makes the nonclassical stochastic control problem very difficult to solve,

even in the FSFM case. One approach to solution of the FSFM problerf is the

person - by - person Min-H algorithm sketched in Section III. Presently,

evaluation of the algorithm is being carried out in the context of a highly

simplified model of an ARPA-type packet switching.computer communication

network [16].The primary:;difficulty is essentially combinatorial, since there

is an explosive growth in the number of states with network size. Thus

straightforward implementation of an algorithm seeking a "node-by-node" optimal

routing strategy is possible only for small networks, or larger networks with

an aggregated and/or merged [17] state set.
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